331 research outputs found

    Complex formation between glutamyl-tRNA synthetase and glutamyl- tRNA reductase during the tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas reinhardtii

    Get PDF
    AbstractThe formation of a stable complex between glutamyl-tRNA synthetase and the first enzyme of chlorophyll biosynthesis glutamyl-tRNA reductase was investigated in the green alga Chlamydomonas reinhardtii. Apparently homogenous enzymes, purified after previously established purification protocols were incubated in various combinations with ATP, glutamate, tRNAGlu and NADPH and formed complexes were isolated via glycerol gradient centrifugation. Stable complexes were detected only after the preincubation of glutamyl-tRNA synthetase, glutamyl-tRNA reductase with either glutamyl-tRNA or free tRNAGlu, ATP and glutamate, indicating the obligatory requirement of aminoacylated tRNAGlu for complex formation. The further addition of NADPH resulting in the reduction of the tRNA-bound glutamate to glutamate 1-semialdehyde led to the dissociation of the complex. Once complexed to the two enzymes tRNAGlu was found to be partially protected from ribonuclease digestion. Escherichia coli, Bacillus subtilis and Synechocystis 6803 tRNAGlu were efficiently incorporated into the protein—RNA complex. The detected complexes provide the chloroplast with a potential channeling mechanism for Glu-tRNAGlu into chlorophyll synthesis in order to compete with the chloroplastic protein synthesis machinery

    Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy.

    Get PDF
    In mass spectrometry-based untargeted metabolomics, rarely more than 30% of the compounds are identified. Without the true identity of these molecules it is impossible to draw conclusions about the biological mechanisms, pathway relationships and provenance of compounds. The only way at present to address this discrepancy is to use in silico fragmentation software to identify unknown compounds by comparing and ranking theoretical MS/MS fragmentations from target structures to experimental tandem mass spectra (MS/MS). We compared the performance of four publicly available in silico fragmentation algorithms (MetFragCL, CFM-ID, MAGMa+ and MS-FINDER) that participated in the 2016 CASMI challenge. We found that optimizing the use of metadata, weighting factors and the manner of combining different tools eventually defined the ultimate outcomes of each method. We comprehensively analysed how outcomes of different tools could be combined and reached a final success rate of 93% for the training data, and 87% for the challenge data, using a combination of MAGMa+, CFM-ID and compound importance information along with MS/MS matching. Matching MS/MS spectra against the MS/MS libraries without using any in silico tool yielded 60% correct hits, showing that the use of in silico methods is still important

    Die Chemie-Abteilung der Ingenieurschule beider Basel

    Get PDF
    The essential features of the education of HTL chemists (equivalent to a B.Sc.) at Basle Engineering College are presented along with the aims of each subject. Some current problems are spotlighted

    High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium

    Get PDF
    BACKGROUND: During the last years B. megaterium was continuously developed as production host for the secretion of proteins into the growth medium. Here, recombinant production and export of B. megaterium ATCC14945 penicillin G amidase (PGA) which is used in the reverse synthesis of β-lactam antibiotics were systematically improved. RESULTS: For this purpose, the PGA leader peptide was replaced by the B. megaterium LipA counterpart. A production strain deficient in the extracellular protease NprM and in xylose utilization to prevent gene inducer deprivation was constructed and employed. A buffered mineral medium containing calcium ions and defined amino acid supplements for optimal PGA production was developed in microscale cultivations and scaled up to a 2 Liter bioreactor. Productivities of up to 40 mg PGA per L growth medium were reached. CONCLUSION: The combination of genetic and medium optimization led to an overall 7-fold improvement of PGA production and export in B. megaterium. The exclusion of certain amino acids from the minimal medium led for the first time to higher volumetric PGA activities than obtained for complex medium cultivations

    Proteome analysis of a recombinant Bacillus megaterium strain during heterologous production of a glucosyltransferase

    Get PDF
    A recombinant B. megaterium strain was used for the heterologous production of a glucosyltransferase (dextransucrase). To better understand the physiological and metabolic responses of the host cell to cultivation and induction conditions, proteomic analysis was carried out by combined use of two-dimensional gel electrophoresis and mass spectrometry (2-DE/MS) for protein separation and identification. 2-DE method was optimized for the separation of intracellular proteins. Since the genome of B. megaterium is not yet available, peptide sequencing using peptide fragment information obtained from nanoelectrospray ionization quadrupole-time-of-flight tandem mass spectrometry (ESI-QqTOF MS/MS) was applied for protein identification. 167 protein spots were identified as 149 individual proteins, including most enzymes involved in the central carbon metabolic pathways and many enzymes related to amino acid synthesis and protein synthesis. Based on the results a 2-DE reference map and a corresponding protein database were constructed for further proteomic approaches on B. megaterium. For the first time it became possible to perform comparative proteomic analysis on B. megaterium in a batch culture grown on glucose with xylose induction for dextrasucrase production. No significant differences were observed in the expression changes of enzymes of the glycolysis and TCA cycle, indicating that dextransucrase production, which amounted to only 2 % of the entire protein production, did not impose notable metabolic or energetic burdens on the central carbon metabolic pathway of the cells. However, a short-term up-regulation of aspartate aminotransferase, an enzyme closely related to dextransucrase production, in the induced culture demonstrated the feasibility to use 2-DE method for monitoring dextransucrase production. It was also observed that under the cultivation conditions used in this study B. megaterium tended to channel acetyl-CoA into pathways of polyhydroxybutyrate production. No expression increases were found with cytosolic chaperones such as GroEL and DnaK during dextransucrase production and secretion, whereas a strong up-regulation of the oligopeptide-binding protein OppA was observed in correlation with an increased secretion of dextransucrase into the culture medium

    Metabolism the Difficile Way: The Key to the Success of the Pathogen Clostridioides difficile

    Get PDF
    Strains of Clostridioides difficile cause detrimental diarrheas with thousands of deaths worldwide. The infection process by the Gram-positive, strictly anaerobic gut bacterium is directly related to its unique metabolism, using multiple Stickland-type amino acid fermentation reactions coupled to Rnf complex-mediated sodium/proton gradient formation for ATP generation. Major pathways utilize phenylalanine, leucine, glycine and proline with the formation of 3-phenylproprionate, isocaproate, butyrate, 5-methylcaproate, valerate and 5-aminovalerate. In parallel a versatile sugar catabolism including pyruvate formate-lyase as a central enzyme and an incomplete tricarboxylic acid cycle to prevent unnecessary NADH formation completes the picture. However, a complex gene regulatory network that carefully mediates the continuous adaptation of this metabolism to changing environmental conditions is only partially elucidated. It involves the pleiotropic regulators CodY and SigH, the known carbon metabolism regulator CcpA, the proline regulator PrdR, the iron regulator Fur, the small regulatory RNA CsrA and potentially the NADH-responsive regulator Rex. Here, we describe the current knowledge of the metabolic principles of energy generation by C. difficile and the underlying gene regulatory scenarios

    Production of recombinant antibody fragments in Bacillus megaterium

    Get PDF
    BACKGROUND: Recombinant antibodies are essential reagents for research, diagnostics and therapy. The well established production host Escherichia coli relies on the secretion into the periplasmic space for antibody synthesis. Due to the outer membrane of Gram-negative bacteria, only a fraction of this material reaches the medium. Recently, the Gram-positive bacterium Bacillus megaterium was shown to efficiently secrete recombinant proteins into the growth medium. Here we evaluated B. megaterium for the recombinant production of antibody fragments. RESULTS: The lysozyme specific single chain Fv (scFv) fragment D1.3 was succesfully produced using B. megaterium. The impact of culture medium composition, gene expression time and culture temperatures on the production of functional scFv protein was systematically analyzed. A production and secretion at 41°C for 24 h using TB medium was optimal for this individual scFv. Interestingly, these parameters were very different to the optimal conditions for the expression of other proteins in B. megaterium. Per L culture supernatant, more than 400 μg of recombinant His(6)-tagged antibody fragment were purified by one step affinity chromatography. The material produced by B. megaterium showed an increased specific activity compared to material produced in E. coli. CONCLUSION: High yields of functional scFv antibody fragments can be produced and secreted into the culture medium by B. megaterium, making this production system a reasonable alternative to E. coli
    corecore